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Abstract 

This report discusses the use of logistic regression as a technique for developing optimal classification 
rules for multi-instance and multi-modal biometric fusion, using fingerprint and face data. 
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Appendix D  Fusion by Logistic Regression 

1 Introduction 
This paper explores the use of logistic regression as a technique for developing optimal 
classification rules.  The purpose of the paper is at least partly expository.  The logistic technique 
is by no means new, but appears to be underutilized in the biometrics community.  This may be 
due, in part, to the association of regression with classifiers that are linear in the raw scores.  That 
this need not be the case is shown conceptually and by example. 

The paper is organized as follows.  The relationship between logistic regression and the 
likelihood ratio is developed.  The relationship is illustrated for single scores, using the data 
described above.  Then alternatives to fusion of scores are discussed.  Finally, fusion using 
logistic regression is illustrated in the context of relating TAR to the number of pairs of images 
fused. 

2 Key Statistical Concepts  
The early part of the paper contains a number of short sections to highlight the statistical 
concepts that are being brought together. 

2.1 Likelihood 

Consider the population of mates, and let X be the score of a random case (pair of images) from 
that population.  The scores will be taken to have a probability density f (xT ) , where T is used 

to denote a true mate.  For a score from that population whose value is x, f (xT )  is the likelihood 
of the score.  Similarly, the density of the scores from the population of non-mates will be 
denoted by f ( )x F . 

2.2 Likelihood Ratio and the Neyman-Pearson Fundamental Lemma 

The Neyman-Pearson Lemma specifies that the optimal classification of a case, based on the score 
x, is to classify the case as a mate if the likelihood ratio f (xT ) f (x F)  is sufficiently large.  The 
optimum cut-off point for the ratio is determined by the relative sizes of the two populations (i.e. 
the prior probabilities), as well as the relative costs of misclassification.  The ratio itself is 
independent of these. 

2.3 Maximum Likelihood Estimation 

In general, the numerator and denominator of the likelihood ratio are unknown, and have to be 
estimated from a training sample, in which not only the scores are known, but the correct 
classification as well. 

One approach to estimation is to suppose that f (xT )  is known up to a vector of parameters θ.  
Then, the maximum likelihood estimate of θ maximizes the joint likelihood of the sample of mates: 

 L( )θ = ∏ f ( )xT , 
mates
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where f depends on θ as well as x. 

As an example, f might be the Gaussian density, with θ representing the mean and standard 
deviation. 

Exactly the same approach would apply to non-mates, except that the functional form of f and the 
vector of parameters would be different. 

2.4 The Kernel Method of Estimation 

One problem with the maximum likelihood approach is that expressing f as a known function up 
to a small set of unknown parameter values isn’t always realistic.  The data are often not 
consistent with a simple model like the Gaussian density.  An alternative approach is to estimate f 
as the sum of kernel functions, one for each item in the sample, centered on the score for that item.  
Letting y denote the value of a score in the sample of mates, and x the argument of f, the estimate 
of f (xT )  takes the form 

( ) ∑
∈

− ⎟
⎠
⎞

⎜
⎝
⎛ −

=
mates

1ˆ
y c

yx
kcTxf . 

The choice of kernel is not usually critical, and the Gaussian kernel is often used.  The width 
constant c is selected to give a reasonably smooth result.  Of course, the estimation of f (x F  )
would be constructed similarly, possibly with a different value for c. 

2.5 Logistic Regression 

It is not necessary to estimate the densities of the scores of mates and non-mates separately.  Only 
the ratio of the two is required.  This allows the use of simpler techniques.  The logistic regression 
method estimates the logarithm of the ratio of the densities as 

f ( )xT
log ( ) ( )( ) = θ +θ h x +θ h x +Λ

f x F 0 1 1 2 2 , (1) 

where the carriers h are known functions of x.  Often the carriers will be powers of x, but it will 
also be useful to include one or more carriers that capture whether or not x is equal to (or greater 
than, or less than) a particular value.  An example is 

⎧1( )x = 0
h(x) = ⎨ . (2) 

⎩0(x ≠ 0)

As before, the θ are a vector of unknown parameter values, to be estimated from the training data 
by the principal of maximum likelihood. 

2.6 Prior and Posterior Probabilities 

To see how maximum likelihood estimation is constructed in the context of logistic regression, 
consider a single population in which some members are mates, the rest non-mates.  For this 
population, the following is an identity 
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( )
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Here P( )T  is the prior probability that a member of the combined population is a mate, and 

P(T x) is the posterior probability given that the selected member has score x.  Analogous 
definitions apply to the non-mates. 

Combining Equations (1) and (3) and taking logarithms gives 

( )
( ) ( ) ( ) ( ) Λ+++′==

−
xhθxhθθx;θq

xTP
xTP

221101
log , (4) 

1 − P(T )
where θ0′  differs from θ0   in Equation (1) by the quantity log .   The other values of θ 

P( )T
are unchanged.  The left-hand side of Equation (4) is commonly called the log odds – in this case, 
that the item with score x is a mate. 

If one regards the sample pairs as having been drawn from a single population with prior 
probability of a mate ( )TP , then the maximum likelihood estimate of the vector θ maximizes the 
quantity 

( ) ( ) ( )( )∏∏ −=
mates-nonmates

1 xTPxTPθL . (5) 

or, equivalently, 

( ) ( ) ( )( )∑∑ −+=
mates-nonmates

1logloglog xTPxTPθL . (6) 

The maximizing values of θ are obtained by numerical optimization.  

The relative proportions of mates and non-mates in the combined sample have no direct effect on 
the estimates of θ , except for the overall constant term 0θ′ .  This term includes the logarithm of 
the ratio of the prior probabilities, which is estimated from the corresponding ratio in the sample. 

Generally, the proportions of mates and non-mates in the population will be quite different from 
the relative numbers of mates and non-mates in the combined sample.  In the examples 
considered here, we used the weighted likelihood 

( ) ( )(
mn

W xTPxTPL
⎭
⎬
⎫

⎩
⎨
⎧ −

⎭
⎬
⎫

⎩
⎨
⎧= ∏∏

mates-nonmates
1 ) , (7) 

where n is the number of non-mates in the training samples, and m is the number of mates in the 
training sample.  This weighting is equivalent to specifying the prior probability of a mate to be 
0.5, so that θ0 in Equation (1) and θ0′  in Equation (4) are the same quantity. 
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The only effect of this choice is to facilitate comparison of the ratio of the densities to the logistic 
regression model, by plotting each as a function of x.  If the two approaches gave the same result, 
then the curves would coincide.  (Otherwise they would merely be parallel.)  

Logistic regression has some advantages over the direct estimation of the densities of the mates 
and non-mates.  Assuming the correctness of Equation (1), which depends on the selection of 
carriers, both are derived from the Neyman-Pearson lemma.  A second advantage is parsimony.  
The classifier can be described with a short list of parameter values. 

Verlinde et al [Verlinde-00] also cite these reasons for strongly preferring logistic regression to the 
other techniques they consider. 

As noted earlier, the densities for the populations of mates and non-mates are not needed 
individually.  However, logistic regression is not the only approach to modeling the ratio of the 
densities.  Griffin [Griffin-05] models the log(FRR) as a polynomial in log(FAR), then inverting 
the polynomial as part of the steps to obtaining an estimate of the density ratio.  Since 
polynomials are not generally monotonic, he takes steps to ensure invertibility, such as 
controlling the degree of the polynomial and restricting its range. 

Other approaches are best discussed in the context of fusion (see Section 4). 

Equation (3) can be solved for P(T x) , giving 

( )
( )

( )x;θq

x;θq

e
exTP
+

=
1

. (8) 

The right-hand side of Equation (8), as a function of q, is commonly called the logistic function.  
Hence the name of the regression technique. 

Note that for both density ratio and for logistic regression, prior probabilities have no effect on 
the ROC curve.  Thus they only determine the optimum threshold.  Determining the optimum 
threshold requires, in addition to the priors, the relative costs of the two types of 
misclassification. These are outside the scope of our work. 

2.7 Spikes 

The distributions of scores, for most of the matchers, include a small number of specific values 
that occur frequently.  Often these are the upper and lower bounds of the scores.  For example, a 
matcher might produce scores within the range 0 to 1.  For various reasons, such as the 
discreteness of the value reported, or in order to save computation time, a clear non-mate might 
be reported as an exact 0, a clear mate reported as an exact 1.  Thus the training data will include 
a large number of 0’s and 1’s. 

As suggested earlier, under logistic regression, spikes can be modeled using carriers such as 
Equation (2).  For the present data, such a carrier for the upper bound is not needed, since the 
upper bound value rarely occurs among the known non-mates.  The coefficient for such a term 
would not be estimable.  On the other hand, lower bound values occur frequently among both 
the mates and the non-mates, so terms for these need to be included. 
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For the kernel method of density estimation, spikes need to be excluded from the data.  When 
forming the ratio of the densities, for spike values, this is the ratio of the proportion among the 
mates to the proportion among the non-mates.  For non-spike values, the ratio of the densities 
must be adjusted for the relative proportions of non-spike values among the mates and the non-
mates. 

3 Single-Score Examples 
The NDBF06 dataset (described in Part III) consists of 186,867 paired sets of fingerprint and face 
images.  Of these, 64,867 pairs were known mates, 122,000 were known non-mates.  There were 3 
face matchers (A, B, C) and 3 fingerprint matchers (H, I, Q).  For the fingerprint matchers, the left 
index finger was selected arbitrarily. 

The goal here was to make a visual comparison between the log odds obtained from the 
logarithm of the density ratio (using the kernel method), and the log odds obtained from logistic 
regression.  The carriers used for the latter include the scores raised to various powers, plus one 
or two carriers in the form of Equation (2) to represent the spikes (though never the upper bound, 
for the reason given earlier). 

The software package JMP1 is used as a source for the kernel method, and for logistic regression.  
For the kernel method, JMP’s default kernel width is used.  Spikes are appropriately handled, as 
discussed in Section 2.7.. 

Figure 1 through Figure 6 give the results for Matchers A, B, C, H, I, and Q, respectively.  Each 
figure shows the estimated log of the density ratio, and one or two logistic regression fits.  Each 
of the fits includes the required spike terms.  For the face matchers, one of the fits is always a 2nd-
order polynomial.  A second fit is included, if the addition of higher-order terms appears to 
improve the fit.  For fingerprints, the first fit is always a straight line. 

The vertical line in each plot locates the score corresponding to FAR=0.0001, based on the higher-
order logistic regression fit.  The corresponding value of TAR is also shown. 

It appears that the logistic regression tracks the log of the density ratio more closely for the face 
matchers than for the finger matchers.   This happens because fingerprint matchers are far more 
capable of separating mates from non-mates, as is apparent from the reported TAR values.  
Therefore, there is less overlap between the data from the mates and the non-mates.  It is the 
overlapping portion of the data that provide the information for estimating both the density ratio 
and the parameters of the logistic regression. 

For similar reasons, the log of the density ratio estimates, themselves, are visibly more variable at 
the extreme score values, where either the mates or the non-mates are sparse, and the log odds 
correspondingly difficult to estimate.  As compensation, it is necessary to smooth these areas, as 
was done in other parts of this report, but not here. 

For the face matchers, it appears that some further improvement might be obtained by adding a 
term that captures whether the score is greater than a specified threshold, even though that 
threshold is not a spike, per se.  For example, for Matcher A, one might include 

                                                 
1 JMP is “statistical discovery software” from SAS: http://www.jmp.com/  
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since the density ratio rises so rapidly after that value.  Such a possibility will not be pursued 
here. 

In addition to the spike at 0, Matcher Q produces a spike at –1.  Since the matchers are “black 
boxes”, the reason for the extra spike is not known.  Possibly, the –1 score is meant to 
communicate that the matcher knows that it cannot make a reliable classification. 

It is notoriously perilous to extrapolate polynomial fits outside the range of the data used to 
obtain these fits.  Following Griffin [Griffin-05] one should set boundaries so that any value 
below the low boundary is classified as a non-mate, and any value above the high boundary is 
classified as a mate. 

One thing that should be apparent from the above discussion is that the form of the logistic 
model used for logistic regression should not be done blindly. In the examples, the models were 
deliberately selected to match the density ratios from the kernel method. Simpler approaches, 
such as histograms of the scores of mates and non-mates will often be more accessible. Inevitably, 
some trial and error with different models will also be required. 
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Figure 3: Matcher C: Log Odds (of a Mate) by Face Score (fn) 
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Figure 5: Matcher I (Left Index Finger): Log Odds (of a Mate) by Finger Score (li) 
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Figure 6: Matcher Q (Left Index Finger): Log Odds by Finger Score (li) 
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4 Fusion 
Fusion refers to the combination of two or more scores to obtain a classifier with a higher level of 
performance.  One of the simplest is to let the single-score classifiers “vote”, with rules that 
define the number of “mate” votes needed for the “mate” classification.  For example, with two 
scores, the rule might assign “mate” if either of the two single-score classifiers assigns “mate”.  A 
simple extension would be to apply weights to the votes.  For example, based on the results 
reviewed above, one might assign higher weights to finger matchers, lower weights to face 
matchers. 

The Neyman-Pearson lemma continues to hold if x is a vector of scores.  However, multivariate 
implementations of the kernel method are not readily available.  More fundamentally, as the 
number of scores to be fused increases, the data become more sparse, and the uncertainty in the 
density ratio correspondingly greater. 

If one assumes that the scores to be fused are statistically independent of each other, then the 
single-score densities can be multiplied together, and the optimum classification procedure is to 
set a threshold on the ratio of the products of the densities (or, equivalently, the product of the 
ratios). 

Under mild dependencies, the optimum classifier will typically not be a major improvement over 
one based on the assumption of independence.  Nonetheless, the nature of these dependencies 
can be interesting in their own right. 

For example, Figure 7 shows the correlation matrix for the 10 raw finger scores from Matcher I, 
separately for the populations of mates and non-mates.  The fingers are shown in anatomical 
order, left little (ll) to right little (rl).  Colors are used to make patterns easier to see.  None of the 
correlations are negative.  Among the mates, the correlations are stronger than among the non-
mates, but the patterns are similar.  One also sees that corresponding fingers on left and right 
hands tend to be more strongly correlated, as do the four fingers collected in each slap.  Even 
more intriguing is the fact that adjacent fingers tend to be more correlated with each other than 
non-adjacent fingers.  
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Figure 7: Color map of correlations for Matcher I 

Tables 1 and 2 show the corresponding numerical correlations. 

 ll lr lm li lt rt ri rm rr rl 

ll 1.0000 0.4161 0.3184 0.2877 0.2175 0.1672 0.2218 0.2194 0.2710 0.3677

lr 0.4161 1.0000 0.4738 0.3538 0.2392 0.1741 0.2336 0.2854 0.3424 0.3258

lm 0.3184 0.4738 1.0000 0.4192 0.2416 0.1792 0.2530 0.3409 0.3239 0.2727

li 0.2877 0.3538 0.4192 1.0000 0.2708 0.2121 0.3386 0.2746 0.2727 0.2638

lt 0.2175 0.2392 0.2416 0.2708 1.0000 0.3135 0.2198 0.2028 0.2133 0.2287

rt 0.1672 0.1741 0.1792 0.2121 0.3135 1.0000 0.2800 0.2186 0.2083 0.2065

ri 0.2218 0.2336 0.2530 0.3386 0.2198 0.2800 1.0000 0.3741 0.3199 0.2915

rm 0.2194 0.2854 0.3409 0.2746 0.2028 0.2186 0.3741 1.0000 0.4642 0.3172

rr 0.2710 0.3424 0.3239 0.2727 0.2133 0.2083 0.3199 0.4642 1.0000 0.4102

rl 0.3677 0.3258 0.2727 0.2638 0.2287 0.2065 0.2915 0.3172 0.4102 1.0000

Table 1: Correlations of Matcher I Scores among the Mates. Values range from 0.1672 to 0.4738 
(ignoring the identity diagonal). 
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 ll lr lm li lt rt ri rm rr rl 

ll 1.0000 0.1354 0.0861 0.0659 0.0451 0.0360 0.0472 0.0610 0.0939 0.1434

lr 0.1354 1.0000 0.1563 0.0959 0.0760 0.0625 0.0735 0.1087 0.1756 0.1261

lm 0.0861 0.1563 1.0000 0.1528 0.0819 0.0714 0.1039 0.1979 0.1107 0.0976

li 0.0659 0.0959 0.1528 1.0000 0.0788 0.0624 0.1804 0.1339 0.0842 0.0708

lt 0.0451 0.0760 0.0819 0.0788 1.0000 0.1994 0.0646 0.0694 0.0609 0.0549

rt 0.0360 0.0625 0.0714 0.0624 0.1994 1.0000 0.0807 0.0707 0.0670 0.0515

ri 0.0472 0.0735 0.1039 0.1804 0.0646 0.0807 1.0000 0.1438 0.0918 0.0693

rm 0.0610 0.1087 0.1979 0.1339 0.0694 0.0707 0.1438 1.0000 0.1331 0.0983

rr 0.0939 0.1756 0.1107 0.0842 0.0609 0.0670 0.0918 0.1331 1.0000 0.1333

rl 0.1434 0.1261 0.0976 0.0708 0.0549 0.0515 0.0693 0.0983 0.1333 1.0000

Table 2: Correlations of Matcher I Scores among the Non-Mates. Values range from 0.0360 to 
0.1994 (ignoring the identity diagonal). 

There are several reasons why such correlations might occur.  The prints for a single subject’s 
hands are physically similar because they share the same genes and the similar daily patterns of 
use. A set of fingerprints collected from that subject are even more similar because they share the 
same collection environment, including the same operator and device.  

4.1 Fusion with Logistic Regression 

In the context of logistic regression, fusion is accomplished by including carriers h for all of the 
scores being fused.  One may also include carriers that involve more than one score, such as 
products of powers.  Of course, as was noted for kernel density estimation, the complexity of the 
model may increase rapidly with the number of scores fused.  Here, complexity refers to the 
number of carriers, each of which involves a coefficient θ to be estimated. 

For the present data, several trial models seemed to suggest that the coefficients for carriers 
involving multiple scores were almost always statistically insignificant.  Thus, such carriers were 
not used.  In that case, the number of coefficients would increase linearly with the number of 
scores fused.  Even so, reducing the maximum power to which a score is raised may be necessary 
in order to obtain a stable estimate. 

Under the assumption of independence, the regression models for the individual scores can 
simply be added together.  There is some advantage to being able to do this.  One does not need 
training data to fuse the scores (some data is still needed to set a threshold based on the ROC 
curve). 
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4.2 Logistic Regression Alternatives to Maximum Likelihood 

One of the problems with any maximum likelihood procedure, including logistic regression, is 
that the results may be sensitive to model misspecification or data anomalies.  Several authors 
have proposed alternative techniques that are “robust” to departures from assumptions. 

Jain et al [Jain-99c] find the linear combination of scores that maximizes the FRR for a specified 
FAR.   The optimization is done under the assumption that, within the populations of mates and 
non-mates, the scores are distributed independently, and that Equation (1) can be used to 
construct the ROC curve, which is therefore continuous. 

Pepe et al [Pepe-05] find the linear combination of scores that maximize the area under the 
empirical ROC curve.  If, for a given linear combination, the values for the combined samples are 
ranked from smallest to largest, then this is equivalent to finding the linear combination that 
minimizes the sum of the ranks among the non-mates (or maximizing among the mates).  There 
would seem to be a relationship to the method described in Hettmansperger and McKean 
[Hettmansperger-77] for linear regression, although it is not currently clear how to exploit this 
relationship. 

The procedure would be difficult to apply to large data sets, as the authors have observed, 
because it is iterative, and each iteration requires that the data be ranked anew.  Moreover, the 
procedure will cycle after it gets close to an optimal solution, so determining convergence is also 
a problem. 

In Equation (5), extremely low scores among the mates, or high scores among the non-mates, will 
be highly influential because they drive the corresponding logarithms towards (minus) infinity.  
Bianco and Yohai [Bianco-96] suggest an alternative criterion where the contributions from 
individual scores are effectively bounded.  Croux and Haesbroeck [Croux-03] made some key 
modifications to their method.  As modified by Croux and Haesbroeck, and simplifying 
somewhat, the Bianco-Yohai estimate minimizes 

( )( ) ( )( )( )∑∑ −−+−
mates-nonmates

1loglog xTPρxTPρ , (10) 

where 

( ) ( ) ( )( )⎪⎩

⎪
⎨
⎧

++++−
≤

=
−−

−

otherwise1212
if

   ddete
d t                                                    tetρ

dt

d

, (11) 

where d is a specified constant.  (The authors use 50.d = .)  It is easy to see that  is bounded.  
Unlike the Bianco-Yohai original estimate, Croux and Haesbroeck show that this estimator exists 
whenever the maximum likelihood estimator exists.  The authors provide a detailed algorithm 
for solving the minimization problem. 

( )tρ

The Croux-Haesbroeck algorithm is implemented in S-plus, and presumably readily translated 
into R. 

Alternatives to maximum likelihood could be an improvement in the event of model 
misspecification.  For example, the methods might mitigate the distortion caused by spikes not 
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included in the model.  The focus in this paper has been to use the data to guide the development 
of the model, thus reducing the risk of misspecification. 

4.3 How Many Fingers are Needed? 

To illustrate the use of logistic regression for fusing fingerprint scores, consider the problem of 
determining the incremental benefit of involving additional fingers in the fusion.  A stepwise 
version of logistic regression is used, in which the finger providing the greatest increase in the 
likelihood is added to the set of fingers already fused.  The process is continued until adding 
additional fingers provides no significant increase in the likelihood. 

In each case, the carriers for an individual finger are the score itself, plus additional carriers for 
spikes.  The spikes are at 0 for Matcher H, and at –1 and 0 for Matcher Q. 

The choice to avoid the higher-order polynomial fits used for single-score matches was made, in 
order to avoid simultaneous estimation of large numbers of parameters, as the number of fingers 
increased. 

The stepwise procedure is difficult to do when the single-finger model includes terms for spikes, 
since there is generally no easy way to identify to most software packages that such terms are 
linked together.  Fortunately, the model for Matcher I includes no such terms.  Accordingly, the 
stepwise procedure with Matcher I was used to identify sequential sets of fingers.  The same sets 
were used for Matchers H and Q. 

The results are shown in Figures 8, 9, and 10 for Matchers H, I, and Q, respectively.  Each plot 
shows FRR plotted against FAR, both using logarithmic scales, for increasing numbers of fingers.  
The specific fingers are identified. However it is likely that some other combinations of fingers 
would produce very similar results. 

The plots for Matchers H and I suggest that approximately 0.05% of the mates (~30 individuals) 
in the training set will not be correctly classified, regardless of the number of fingers or the FAR 
threshold used for the classification.  Visual review of the data found 33 subjects for whom the 
mate associations were incorrect.2 In other words, for this dataset, FRR below 0.051% cannot 
generally be achieved unless data integrity errors are excluded; that limit is reached with a 
variety of 3- or 4-finger combinations. 

The plots also reveal some differences among the matchers.  For Matcher I, three fingers are 
sufficient to reach this 0.05% limit, while Matcher H takes 4 fingers but reaches a slightly lower 
FRR.  Matcher Q, on the other hand, does not do as well with the five fingers. 

4.4 Cross Validation 

The numbers of non-mates above the FAR=0.0001 score and mates below that score are small.  
This raises the concern that the high TAR (low FRR) observed in the previous section may be 

                                                 
2 In the NBDF06 dataset, 33 subjects out of 64,867 (0.051%) were found to have some or all of their 
fingers misidentified, of whom 24 (0.037%) also have their faces misidentified. FRR can pass the 
0.051% limit with some finger combinations, but not the 0.037% limit. 

20 July 2006  16/23 



Appendix D  Fusion by Logistic Regression 

overly influenced by the samples, and not adequately reflective of the population from which 
they were drawn.  Particularly, FRR may be biased downward. 

Cross-validation can be used to produce a more unbiased estimate of TAR at FAR=0.0001, and, 
incidentally, to give a confidence interval for the true average TAR for this estimation method.  
This is illustrated with the results for Matcher I. 

Cross-validation requires that the estimation method first be rigorously defined: Stepwise logistic 
regression is used to fit a model involving the linear terms only for the 10 individual finger 
scores.  The first 5 selected fingers are used to construct the model. 

The cross-validation was carried out by assigning each pair of images (probe and gallery) 
randomly to one of 10 groups.  For each of the 10 groups, the model was developed using only 
the pairs not in the group.  The ROC curve from the model was then constructed using only pairs 
in the group.  In effect, 90% of the data are used to develop the model, 10% to evaluate it. 

Table 1 shows, for each of the groups, the TAR corresponding to FAR=0.0001, as well as a list of 
the 5 fingers selected (not in the order selected).  There is considerable variation among the 
individual results, expected since, with only about 6000 mates, very few will fall below the 
threshold.  (In one case, the fit achieved total separation of mates and non-mates.) 

With respect to which fingers were selected, there is considerable (but not total) agreement 
among the 10 groups.  This would be expected, however, since there is a lot of overlap among the 
groups with respect to the data used in model construction. 

The TAR mean and standard deviation are shown at the bottom of the table.  The mean TAR is 
0.99951, showing little bias relative to results based on the full data set.  A 95% confidence 
interval for the true TAR is 0.99951±0.00018. 
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Group TAR Selected Fingers

1 0.9998 rt, rr, rm, lt, li 

2 0.9994 rt, rr, lt, lr, li 

3 0.9994 rt, rr, lt, lr, li 

4 0.9995 rt, rr, lt, lr, li 

5 0.9997 rt,  rr, rm, lt, lr 

6 0.9995 rt, rr, lt, lr, li 

7 0.9994 rt, rr, lt, lr, li 

8 1.0000 rt, rr, ri, lt, lr 

9 0.9992 rt, rr, rm, lt, lr 

10 0.9992 rt, rr, rl, ri, lt 

Mean 0.99951  

Standard Deviation 0.00026  

Table 1.  Cross-Validation Results for matcher I 

4.5 How Many Fingers Assuming Independence? 

If one can assume that the scores for the 10 fingers are independent within the populations of 
mates and non-mates, then the regression-derived scores ( )x;θq  for different fingers can be 
simply added together. 

There are two reasons why the ability to easily combine fingers is useful.  First, one can create 
new fusions without the data needed to perform a logistic regression on the carriers for the 
combined fingers, as was done in Figures 8, 9, and 10.  Second, there is no need to reduce the 
degree of polynomial fitted to single scores in order to keep the number of parameters θ 
manageable. 

Figure 11 shows, for Matcher I, the results of simply adding together 1st-order polynomials 
separately obtained for the sequential sets of fingers used in Figure 9.  Figure 12 does the same, 
but with 4th-order polynomials.  These correspond to the regressions considered for Matcher I 
with the left index finger in Figure 5.  As in Figure 9, FRR is plotted against FAR. 

Figures 9, 11, and 12 are almost identical, except at the lowest FAR levels, where the differences 
seen are with respect to the classification of single items. 
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Figure 8: Matcher H: FRR by FAR, by Finger Set 
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Figure 9: Matcher I: FRR by FAR, by Finger Set 
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Figure 10: Matcher Q: FRR by FAR, by Finger Set 
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Figure 11: Matcher I: FRR by FAR, by Finger Set – Using 1st –Order Polynomials and summing 
the single-finger models 
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Figure 12: Matcher I: FRR by FAR, by Finger Set – Using 4th –Order Polynomials and 
summing the single-finger models 

5 Conclusion 
Classification by Logistic Regression is a useful alternative to classification by density ratio.  It is 
strongly related to the density ratio method, but produces a classification that can be summarized 
in a relatively small number of numerical parameters.  The classifier is reasonably flexible, in that 
it is not necessarily a linear combination of the raw scores.  While not needed for the current data 
set, the method can be applied even where one wishes to include modeling the dependence 
among the raw scores.  Finally, the method is widely implemented among commonly used 
statistical software packages. 
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