2011 Third IEEE International Conference on Coud Computing Technology and Science

Comparing VM-Placement Algorithms for On-Demand Clouds

K. Mills, J. Filliben and C. Dabrowski
Information Technology Laboratory
NIST
Gaithersburg, MD USA

{kmills, jfilliben, cdabrowski}@nist.gov

Abstract—Much recent research has been devoted to
investigating algorithms for allocating virtual machines (VMs)
to physical machines (PMs) in infrastructure clouds. Many
such algorithms address distinct problems, such as initial
placement, consolidation, or tradeoffs between honoring
service-level agreements and constraining provider operating
costs. Even where similar problems are addressed, each
individual research team evaluates proposed algorithms under
distinct conditions, using various techniques, often targeted to
a small collection of VMs and PMs. In this paper, we describe
an objective method that can be used to compare VM-
placement algorithms in large clouds, covering tens of
thousands of PMs and hundreds of thousands of VMs. We
demonstrate our method by comparing 18 algorithms for
initial VM placement in on-demand infrastructure clouds. We
compare algorithms inspired by open-source code for
infrastructure clouds, and by the online bin-packing literature.

Keywords- cloud computing; resource allocation; simulation

L. INTRODUCTION

Paxson and Floyd [1] describe many difficult problems
impeding simulation of large data communication networks,
which typically require hundreds of parameters that can each
take on millions of values and that can also record hundreds
of response variables, which might represent aspects of
fewer significant underlying behaviors. The same can be said
for most simulations of large distributed systems, such as on-
demand infrastructure clouds.

We have developed an objective method to compare
resource-allocation algorithms in simulations of large
distributed systems. Our method involves several steps: (1)
developing a reduced-parameter model for a large distributed
system of interest, (2) conducting a sensitivity analysis to
determine the most significant model behaviors and the
parameters that most influence those behaviors, (3) applying
two-level orthogonal fractional factorial experiment design
[2] to construct a set of parameter combinations under which
resource-allocation algorithms should be compared and (4)
using multidimensional data analysis techniques to find
patterns revealing significant similarities and differences
among the algorithms being compared. In previous work [3-
4], we applied our method to compare proposed congestion-
control algorithms for the Internet. Also in previous work
[5], we demonstrated the first two steps in our method, when
applied to on-demand infrastructure clouds. We constructed
a reduced-parameter model (explained below in Sec. III) and
we conducted a sensitivity analysis that revealed eight
behavioral dimensions and six influential parameters.

978-0-7695-4622-3 2011
U.S. Government Work Not Protected by U.S. Copyright
DOI 10.1109/CloudCom.2011.22

91

In this paper, we demonstrate steps three and four in our
method, using the results from our sensitivity analysis to
construct 32 parameter combinations under which we
compare the macroscopic behavior of 18 possible algorithms
for initially placing virtual machines (VMs) on physical
machines (PMs). Our comparative conditions encompasses
cases with up to O(10*) PMs and O(10°) VMs. While there
are many possible algorithms to investigate (as explained
below in Sec. II), we elected to focus on algorithms inspired
by a combination of the Eucalyptus open-source code [6] and
the online bin-packing literature [7-8]. Eucalyptus inspired
us to evaluate two-level algorithms that first choose a cluster
for VMs in a related request and then choose nodes within
the selected cluster. The literature for online bin-packing
inspired us to adopt algorithms based on well-known
heuristics that can provide good (not optimal) results without
infeasible computation.

Our paper makes three main contributions. First, we
demonstrate an objective method for comparing possible
VM-placement algorithms through simulation of large, on-
demand infrastructure clouds. While we restrict our
comparison to 18 selected algorithms, the approach we use
should be applicable to compare any set of competing
algorithms. Second, we generate some insights regarding
two-level VM-placement algorithms, showing that choice of
cluster has larger influence, than choice of nodes, on
macroscopic behavior in an infrastructure cloud. We also
provide observations about specific pairs of algorithms,
where each pair combines a criterion for choosing a cluster
with a heuristic for choosing PMs within a cluster. We also
discuss some tradeoffs among algorithms. Third, we provide
evidence showing that, on average, different algorithms for
initial VM placement in on-demand infrastructure clouds
yield only small quantitative differences in many of the 42
responses we measured (as explained below in Sec. IV). On
the other hand, we show that selection of the algorithm for
choosing a cluster can lead to very large difference in
provider revenue, when aggregated over time.

The remainder of this paper is organized as follows. In
Sec. I we describe the general area of VM-placement
research in infrastructure clouds, setting our study within this
larger context. In Sec. III we describe our model and identify
both fixed and varied parameters used in our study. We give
values for fixed parameters, but postpone defining values for
variable parameters until Sec. IV, where we describe our
experiment design. In Sec. V we present our results and
related analysis methods. In Sec. VI we discuss our findings.
We close in Sec. VII with conclusions and future work.

IEEE
computer
® psouety

II.

The literature identifies that VM-placement decisions can
be made under any of at least three different regimes [9]: (1)
reservations [10-11], (2) on-demand access [11] and (3) spot
markets [10-12]. In one reservation regime [11], a user pays
a fee per instance per VM type for a period (e.g., one year)
during which the specified VMs may be acquired at a
discount from published usage charges. In on-demand access
regimes, a user simply requests a specified number of one or
more VM types needed immediately, and pays for VM usage
according to a fixed schedule of fees. In spot markets, a
provider’s prices fluctuate over time and a user specifies the
usage rates they are willing to pay for requested VMs. When
the provider price falls to or below the user’s willingness to
pay, then the user’s requested VMs are launched. Should the
provider price subsequently rise above the user’s willingness
to pay, then the user’s VMs are terminated, and can only be
restarted when the price falls to the level the user is willing
to pay. In the grand scheme of resource-allocation decision
making, one can envision PMs migrating back and forth
among three pools, each assigned to one of the three regimes,
as demand for VMs varies. Consideration of how best to
allocate PMs to each pool would seem a ripe area for
research [9]. We restrict our study to consider only on-
demand access.

In on-demand clouds, there are potentially two types of
VM-placement decisions to be made: (1) initial placement
[13-23] and (2) migration (and/or resizing) of VMs over time
[24-30], as PM availability changes, as consolidation is
needed to conserve power and in response to the degree to
which service-level agreements (SLAs) are being achieved.
Most previous research on initial VM placement considered
only PMs within a single cloud, but in one case [22]
placement decisions considered which of several clouds to
choose. In the existing literature, initial placement and VM
migration are usually considered as separate topics, though
in some cases similar algorithms may be adopted. Future
research might consider interaction between initial placement
and migration decisions, especially under situations where
tradeoffs are needed among power conservation, SLAs,
revenue maximization and reliability. We restrict our study
to consider only initial VM placement.

One could consider initial VM placement in on-demand
clouds at two levels: (1) cluster and (2) node (i.e., PM).
When VMs communicate, placing them on the same cluster
makes good sense because communication among the VMs
will be local to a cluster switch. Most existing research [13-
23] considers PMs as an unstructured pool, where restricting
VMs to a shared cluster would be accomplished by
designating a Boolean attribute, one of potentially many
attributes over which some optimization algorithm or bin-
packing heuristic would be executed. In our study, guided by
the open-source code in Eucalyptus (v1.6) [6], we adopt
explicit use of two distinct decisions levels: (1) choosing a
cluster for all VMs in a given request and then (2) choosing
specific PMs within the selected cluster. Taking this course
is the same as assuming that all VMs within a single request

RELATED WORK

92

will communicate. VMs that need not communicate would
then be included in separate requests.

In most VM placement algorithms, PMs are partitioned
into two sets: (1) those that meet some criteria and (2) those
that do not. Subsequently, the set of PMs that meet the
criteria are ordered, and VM placement attempts are made
starting with the first PM on the list, and continuing until all
VMs have been placed or until the set of qualified PMs is
exhausted. Various criteria have been used to order qualified
PMs. For example, many researchers [13, 16, 18, 23, 27]
adopt ordering heuristics based on the literature associated
with online bin packing [7-8]. Other schemes extend those
heuristics by adding specific attributes (e.g., CPU usage,
network and disk controller usage, and memory usage),
summarized into a weighted value used to order PMs or to
assign categories (e.g., star ratings [15]) that can be used to
order PMs. In some schemes, attributes used to order PMs
are determined by individual VM users [23, 30, 31], while in
other schemes attributes are determined by the provider [13,
14, 19, 27], or user and provider attributes are combined [21,
22, 23, 26]. To limit our study, we elected to use heuristics
based on those found in online bin-packing literature. The
method we use to compare placement heuristics should be
applicable to any specific set of VM-placement algorithms
that one wishes to compare.

I1I.

We based our study on Koala, a discrete-event simulator
inspired by the Amazon Elastic Compute Cloud (EC2)" [32]
and by the Eucalyptus open-source software [6]. Using
published information describing the EC2 application
programming interface (API) [33] and available virtual
machine (VM) types [34], Koala models essential features of
the interface between users and EC2. Intended to study
algorithms for initial VM placement, Koala models only four
EC2 commands: Runlnstances, Describelnstances, Reboot
Instances and Terminatelnstances. The internal structure of
Koala is based on the Eucalyptus (v1.6) open-source cloud
software. Specifically, Koala models three FEucalyptus
components: cloud controller, cluster controller and node
controller. As in Eucalyptus, Koala’s simulated cloud,
cluster and node controllers communicate using Web
Services [35], which Koala also simulates.

Koala modifies the design of Eucalyptus in three ways.
First, Koala extends the Eucalyptus Runlnstances command
to allow multiple VM types within a single request, which
appears possible in EC2. Second, Koala avoids centralization
of node information at the cloud controller, permitting
simulation of clouds up to O(10°) nodes. Third, Koala allows
competing Runlnstances to proceed partially in parallel
(serializing only the commitment phase), which prevents
long queuing delays during periods of intense user requests.
In lieu of simulating details of a hypervisor and guest VMs,
Koala includes an optional sub-model based on analytical
equations representing VM behavior with or without tasks.

MODEL

! Any mention of commercial products is for information only; it does not
imply recommendation or endorsement by NIST.

Koala is organized as five layers (see Fig. 1): (1) demand
layer, (2) supply layer, (3) VM placement layer, (4)
Internet/Intranet layer and (5) VM behavior layer. We
describe each layer in turn, omitting the VM behavior layer,
which is not used in the experiments discussed here. We
denote experiment input parameters using designators x/ to
x6 (see Table V) and outputs as yI to y42 (see Table VI).

H} DEMAND LAYER
User User User User | [User User User User User
Ll |_l: " " |_ls »®_ | LA N 2 |_ln! #n2 | | #n1
b 3

User
L

L (4) INTERNET

L
CLOUD CONTROLLER

—
&
—
=

VM
PLACEMENT

Cluster LAYER

Controller #1

Chuster
Contraller #c

INTRANET

INTRANET

Figure 1. Schematic of Koala organization

A. Demand Layer

The demand layer consists of a variable number (x/) of
users who, after random startup delay, each perform
cyclically over a simulation run. During each cycle a user
requests a minimum and maximum number of instances of
one or more of the VM types shown in Table I. The VM
types and quantities a user selects depend upon the user’s
type (see Table II), which is selected on each cycle with
some probability (x2). After selecting a type, a user
randomly chooses a minimum (uniform 1 to a max-min) and
maximum (uniform max-min to a max-max) number of
instances to request for each associated VM type. The user
then issues a corresponding Runinstances request to the
cloud controller, which may respond with an allocation of
instances between the minimum and maximum for each
requested VM type or with a NERA (not enough resources
available) fault. A full grant denotes that a user was allocated
the maximum requested instances of each VM type. A
partial grant denotes that allocated VMs were below the
maximum requested. If given VM instances, the user selects
a holding time, Pareto distributed with variables specified by
a parameter (x3). During the holding period, the user will
first issue Describelnstances requests to determine when all
instances are running, and will subsequently randomly
reboot, terminate and describe running instances. At the end
of the holding period, the user issues a Terminatelnstances
request to stop any running instances. After terminating all
instances, the user will wait an exponentially distributed time
(mean 30 minutes) and then start a new cycle.

Since we believed differences in user persistence were
not germane directly to our study, we assigned fixed means
for each stochastic distribution controlling related behaviors.

93

If a user receives a NERA instead of being allocated
instances, then the user waits an exponentially distributed
time (mean 15 minutes) before retrying the request. A user
will retry a failed request over a random period (mean 4
hours) before resting for a random period (mean 16 hours). If
a user request cannot be honored within a random number of
rest periods (mean 4), then the user abandons the request and
starts a new cycle.

TABLE I. Description of VM types simulated in Koala

Virtual Cores Virtual Block
Devices
Speed Size # Virtual

(GH2) & | (GB)of | Network Memory Instruct Price in

VM Type Each | Interfaces (GB) Arch. $/Hour
M1 small 1 1.7 1 160 1 2 32-bit 0.12
M1 large 2 2 2 420 2 8 64-bit 0.34
M1 xlarge 4 2 4 420 2 16 64-bit 0.96
C1 medium 2 2.4 1 340 1 2 32-bit 0.17
C1 xlarge 8 2.4 4 420 2 8 64-bit 0.68
M2 xlarge 8 3 1 840 2 32 64-bit 1.00
M4 xlarge 8 3 2 850 2 64 64-bit 2.00

TABLE 1I. Description of selected simulated user types: processing users
(PU), distributed modeling and simulation (MS) users, peer-to-peer (PS)
users, Web service (WS) users, and data search (DS) users

User Max-Min Max-Max User Max-Min Max-Max
Type VM Type(s) VMs VMs Type VM Type(s) VMs VMs
PS1 3 10
PU1 10 100 P52 o1 medi o 5
PU3 100 500 PS3 50 100
M1 small
M1 large
PUS 500 1000 Ws1 M2 xlarge 1 3
C1 xlarge
M1 large
PUZ 10 100 ws2 M2 xlarge 3 9
C1 xlarge
M1 large M1 large
PU4 100 500 Ws3 M2 xlarge 9 12
C1 xlarge
PUE 500 1000 ps1 10 100
Ms1 M1 xlarge 10 100 DS2 | M4 xlarge 100 500
MS3 | m1 xiarge 100 500 Ds3 500 1000

TABLE 1II. Description of selected platform types simulated in Koala

Platform Physical Cores Memory # Physical Disks by Size # Instruct.

Type # Speed (GB) 250 | 502 | 750 | 1000 Interfaces Arch,
(GHz) GB | GB | GB | GB
c8 2 2.4 32 0 3 0 0 1 64-bit
c14 4 3 64 0 4 0 3 2 64-bit
Cc18 8 3 128 0 0 4 3 4 64-bit
c22 16 3 256 0 0 0 7 4 B4-bit
B. Supply Layer

The supply layer consists of a variable number (x4) of
clusters that each manages a variable number (x5) of nodes.
When visiting an Amazon EC2 data center, we noticed the
supply of nodes was composed of a limited number of
platform configurations. This motivated us to define a fixed
set of possible platform configurations for nodes. Upon
creation, each node manifests, with some probability (x6),
one of the configurations shown in Table III. Nodes retain
their established configurations for the duration of a
simulation run. For a VM to be allocated to a node, available
resources on the node must be sufficient for the requirements
specified by the VM’s type.

C. VM Placement Layer

Koala patterns VM placement after Eucalyptus
procedures, which involve two decisions: (1) on which
cluster should requested VMs be placed and (2) on which
nodes within the cluster should VMs be placed. In this study,
we compare three alternative criteria used by the cloud
controller to choose a cluster and six alternative heuristics
used by cluster controllers to choose nodes. Combining these
criteria and heuristics creates the (3 x 6 =) 18 VM-placement
algorithms we compare.

TABLE 1V. Alternative Criteria for Choosing Cluster and Alternative
Heuristics for Choosing Nodes

Criteria for Choosing a Cluster : Heuristics for Choosing Nodes

Identifier | Criterion Name ! Identifier | Heuristic Name

1 FF |FirstFit

LLF Least-Full First i -
B LF Least-Full First
I MF | Most-Full First

PAL Percent Allocated "
1 NF Next Fit
I RA Random

RAN Random I
1 TP Tag & Pack

In Eucalyptus, the cloud controller polls cluster
controllers to find out which clusters can accommodate the
VMs requested and then orders the qualified clusters using
some criterion (Table IV — left side). The Least-Full First
(LFF) criterion orders the set of qualified clusters from the
least to most full, while the Percent Allocated (PAL)
criterion orders the set by decreasing proportion of requested
VMs that can be allocated. (Under both these criteria, ties
were ordered by increasing cluster identifier.) The Random
(RAN) criterion orders randomly the set of qualified clusters.

After ordering the qualified clusters, the cloud controller
selects the first cluster in the set and asks that VMs be
created. If VMs are created successfully, then the cloud
controller returns the positive result to the user; otherwise,
the cloud controller reallocates the VMs to the next cluster
in the set. This process continues until VMs are created or
until all clusters have been exhausted. If no clusters can
create the VM, then the user receives a NERA fault.

In Eucalyptus, the cluster controller allocates VMs to
nodes using one of two heuristics: (1) First-Fit (FF) or (2)
Next-Fit (NF). Koala simulates FF and NF, as well as four
more heuristics (Table IV — right side) inspired by online
bin-packing literature. FF searches the cluster’s set of nodes,
ordered by identifier from first to last, until a node is found
that can accommodate a given VM type. NF remembers
which node last received a VM and begins its search from
the next node identifier. Least-Full First (LF) orders the set
of qualified nodes (i.e., nodes on which the VM type will fit)
from least to most full. Most-Full First (MF) orders the set of
qualified nodes from most to least full. Random (RA) orders
randomly the set of qualified nodes. Tag & Pack (TP) marks
nodes by VM type, so that only VMs of a designated type
can be placed on marked nodes. To place a VM, TP
generates a set of qualified nodes marked with the
appropriate VM type, and then adds to the end of that set any
free (i.e., unmarked) qualified nodes. The VM is then placed

94

on the first node in the set. If the selected node is unmarked,
TP marks the node with the appropriate VM type. Whenever
the last VM on a node is terminated, the node’s marking is
removed.

For any of the heuristics, if a selected node cannot
accommodate a VM, then the node controller reallocates the
VM to the next node in the set. This process continues until
the VM is created or until all nodes have been exhausted. If
the minimum requested number of VMs cannot be created,
then the cloud controller receives a NERA fault.

D. Internet/Intranet Layer

Koala assigns the cloud controller, cluster controllers and
users to sites (1000 here) randomly located at x,y coordinates
on a grid (8000x8000 miles here) spanning a distance
consistent with the globe. Before a simulation commences,
cloud and cluster controllers are randomly placed on some
number (1 here) of sites. Node controllers are placed on the
same site as the related cluster controller. At the beginning of
each user cycle, a user is assigned randomly to one of the
sites (999 here) not occupied by cloud components. This
arrangement divides message communications into two
categories: (1) inter-site (Internet) and (2) intra-site
(Intranet). Koala components communicate through
simulated Web Services (WS) messages, which each
comprise a uniformly distributed number (1 to 10 here) of
packets. Individual packets are subjected to transmission
delay (1 Gigabits per second here) and propagation delay.
For inter-site messages, propagation delay depends on
distance and simulated router hops, while propagation delay
within sites varies randomly (mean 250 nanoseconds here).
Individual packets are also subjected to a loss rate (10"% here
for intra-site packets). To simulate Internet congestion, the
loss rate for inter-site packets varies uniformly within a
range (10° to 10™ here). Lost packets are retransmitted, but
only for a maximum number (3 here) of attempts, after
which the related WS message is declared undeliverable.

IV. EXPERIMENT DESIGN

We compared 18 VM-placement algorithms by exposing
each of them to the same 32 combinations of six parameters,
where each parameter could be set to one of two values, as
shown in Table V. The selected parameters were identified
in an earlier sensitivity analysis (SA) [5] as the six most
significant drivers of Koala behavior. Also guided by the SA,
we selected two values for each parameter. We constructed
32 parameter combinations by adopting a two-level, 2%
orthogonal fractional factorial experiment design [2] that
selects Y of the 2° possible combinations, while ensuring
balanced coverage. We then ran 32 simulations for each of
the 18 VM-placement algorithms.

We compared the VM-placement algorithms with respect
to 42 response variables, as shown in Table VI, grouped into
six categories representing: (1) user experience, (2) cloud-
wide resource utilization and load, (3) variance in cluster
utilization and load, (4) number and types of VMs, (5) WS-
message load and (6) revenue. The SA found that Koala has
only eight significant behavioral dimensions, which can be
represented using a subset of eight of the 42 responses, so we

also compared the 18 algorithms along those dimensions (we
identify a response variable to represent each dimension):
(1) cloud-wide demand/supply ratio (y3), (2) cloud-wide
resource usage (y15), (3) variance in cluster load (y21), (4)
mix of VM types (y31), (5) number of VMs (y29), (6) user
arrival rate (y4), (7) reallocation rate (y7) and (8) variance in
cluster choice (y28).

TABLE V. Two Selected Values for each Selected Koala Parameter

Layer Parameter Parameter Name Plus (1) Level Minus (-1) Level
x1 Number of users 2500 250
PU1=0.20
PU2=0.20
PU3=0.10
Pu4=0.10 PU1=1/6
MS1=0.10
MS3 = 0.01 PU2=1/6
Probability of a } MS1=1/6
x2 , PS1=0.10
Demand user’s type PS1=1/6
PS2=0.01
Layer Ws1=1/6
Ws1=0.15 DS = 1/6
WS2=10.07
WS3=0.03
DS1=0.10
DS2=0.01
Average (&
x3 shape) of user’s | 8 hours (a=1.2) (4 hours (a=1.2)
holding time
x4 Number of 20 10
clusters
Number of
Suppl x5 nodes per 1000 100
Lap‘;ry cluster
V! Probability of a C8 = 0.25
node’s platform _ C14=0.25
x6 configuration c22=1.0 C18=10.25
type C22=0.25

Table VI. Koala Response Variables Selected for Comparison

Category 1D Name Definition
|_y1_| User Request Rate [Requests by All Users | & User Cycles)
¥2 | NERA Rate NERAs | Requests by All Usars|
Full Grant Rate (Full Grants | (Full Grants + Fartial Grants])
T User Arrival Rate (# User Cycles { Hours)

User Give-up Rate (# Users that Gave Up | # Usar Cycles)
Grant Lawncy Weighted Avg. Delay in Granling VMs to Users that Got Vs
User Success Rate {[Full Grants + Partial Grantsi/# User Cycles) |

vg. Fraction VMs Obtained (ANocated VMs/Requested Vils)
Avg. Rurinstance Response Time | Weighted avp. for successhul allocations.
Reallocalion Rate Times Alternate Cluster Chosen | Requests Granted)
Full Grant Proportion Awvg. Fraction Clusters Offering Full Grants)
NERA Proportien Avg. Fraction Clusters NERA}
Virtual Corss Used in Cloud)

vCore Utlization Avg. Fraction ol
Cloud Memory Utilization | {Avg. Fraction of Memory in Uz in Cloud)
Disk e Utilization [Avg. Fraction of Disk Spacein Use in Cloud)
ore Load [Avg. Virtual Cores Allocated | Phisical Cores in Claud)

Disk Count Load [Avg. Virtual Disks Allocated! Physical Disks in Cloud)

vg | i
wCore Utlization Variance Avg. Variance
Memary Utilization Variance Avj. Varlance In Memory Utikzation across Clusters
Disk Space Utilization Variance Avg. Variance in Disk Space Utikization across Clusters
pCore Lead Varlance Avg. Varlance in pCore Load, Clusters
Disk Count Variance Avg. Variance in Disk Count Load across Clusters

in vCore Utilization across Clusters

M= s b b b b
T R

¥21_| NIC Court Varlance Avg. Varlance in NIC Count [oad acress Clusters.
Cluster | . Node Reallocation Rate mes Alternate Node Chosen / Vs ﬁlloc:md[
¥23 | Cluster NERA Rate NERAs | # Res Avyg atross Clusters)
| _y24 | Cluster Full-Grant Rate Full Grants /¥ Avg. across Clusters)
_yis LAllocationRate __ (Times Ciuster chosen ! Cluster offered Avg. across Clusters,
y26 | Standard Deviation-NERA Stand. Dev. in Avg. NERA Rate across Clusters
¥27 | Standard Deviation-Full-Grant Stand. Dev. in Avg. Full-Grart Rate across Clusters
:28' Standard Deviation-Allocation Rate | Stand. Dev. in Allocation Rate across Clusters
¥2% | Current Instances Avg. # VM Instance:
¥30 | Mismall nstances raction of Current 1 small VMs.
y31 1large Instances raction of Current 1 large VMs.
s |—¥32_| Mixlargeinstances raction of Current Instance: that are M1 xlarge VMs |
¥33 | Cimedium Instances ‘raction of Current 1 medium VMs
y34 | Clularg raction of Current xlarge VMs
y35 | Mzxlarg: raction of Current Instance: that are M2 xlarge VMs
y36_| Mixlargeinstances raction of Current Instances that are M4 xiarge Vis
latornatt | y0F (Wi Mesmpe Riste ________1Ave S WE Messages Send For Stmutated Hour —
Intranet 38 | Intra-Site Messa: (# WS Messages Sent with Stes / # WS Messages Sent
Revenue | y39 | Aggregate Revenue in $/Hour Calculated from y29 th hy36 & VM prices

V. RESULTS

The simulation runs generated a multivariate dataset
containing 576 rows and 42 columns (one per response).
Each row was tagged with the cluster-choice criterion, node-
selection heuristic and parameter combination that led to the
responses. We applied one-way analysis of variance
(ANOVA) to test for differences among groups of responses.

95

For each response, for example, we computed an F-test
statistic to measure the ratio of variability within data points
grouped by cluster-choice criterion to variability between the
groups:

_ d_fZ . i3=1 Z?:l Zi2=1(xijk - 37)2 |
dfi X X9y Xk (i — X0)? (M

where i is the cluster-choice criterion, j is the node-selection
heuristic, k is the parameter combination, and df, represents
appropriate F degrees of freedom. We then computed the
corresponding cumulative distribution function (cdf) value
for that F-test statistic to reflect the likelihood that the groups
were different.

F

Plot Chas. = Cluster Alloe. Al [§] Piot Character = Cloud Allocation Crlterian (3) UN’.—‘;""‘:‘LS:',';:I:S First
+ PAL =% Allocated
RAN = Randam
0.8 — Cluster Allo, Al
— — F =First Fit
06z —| LF PAL = Neat Fit
o 1 T2 =Tag & Pack
= 08t RA =FRandom
£ 1 MF = Most Full First
_ |ma FaL L* =LeastFull First
Ll o LFF
1 NF — [P
089 — PAL 1
i oo ff paL| |YF| i
v I#. s P I8 L 1 6 I SN X e Fl o o p
© 1 LF I RAN|
o1 | r |ep| [RAN]
2 om| |w) RA LFF) |mam|
o 085 NF RAN
- RaM| |
¥ 0m] - LRAN| RAN
5 -
E 053
0878 0897 0881 087 0574 0561 0883 0867 088 Maan
0003 0021 -0.024 0005 -0001 -0.014 0007 0008 0022 | Effect
1% 4% 4% A% 0% 2% 1% % 4% Relzive Effect
T T T T T Ik T T T
LFF PAL RAN FF NF TP RA MF LF

Cloud Allocation Criterion (3
ANOVA cef = 99.99%

Figure 2. Plot of ANOVA Results for Response Variable y4/- Average
Fraction of VMs Obtained (red denotes significant difference among groups)

Cluster Aliocation Algorithm (6)
ANOVA cdf = 51.52%

In the left hand part of Fig. 2, we show the results of an
ANOVA for the average fraction of VMs obtained (y4/).
The dashed horizontal line denotes the grand mean of all data
points, which is 0.576. The figure includes three blocks
(labeled on the x axis), one for each cluster-choice criterion.
Each block contains six labeled points, each representing the
mean value of the 32 data points when the labeled node-
selection heuristic was paired with the designated cluster-
choice criterion. Below each block are three numbers: (1) the
local mean value of the 192 data points for a given cluster-
choice criterion, (2) the difference between that local mean
value and the grand mean, and (3) the percentage difference.
Below the x axis we report the F cdf value, highlighting in
red any value > 95%.

In the example shown, we observed an F-test statistic
value that would — if the three groups were equal — occur
only (100 — 99.99 =) .01% of the time. This leads us to
conclude that cluster-choice criterion yields statistically
significant differences in the average fraction of VMs
obtained. In the right hand part of Fig. 2, we reverse the
ANOVA analysis to test for differences among six groups of
data points when the node-selection heuristic is varied. In
this case, the node-selection heuristic did not lead to
significant differences.

Table VII gives two summaries of ANOVA results for
each of the 42 responses, one response per row. The first
summary (col. 4) reports differences caused by cluster-

choice criterion and the second summary (col. 5) reports
differences caused by node-selection heuristic. Significant
differences are highlighted in red.

Table VIII reports the mean value for each response (42
rows) given each cluster-choice criterion (cols. 3-5). Each
mean averages 192 observations (32 parameter combinations
by six node-selection heuristics). The means are highlighted
in red for responses where ANOVA found a significant
difference caused by cluster-choice criterion. Table IX
reports the mean value for responses given each node-
selection heuristic. Each mean averages 96 observations (32
parameter combinations by three cluster-choice criteria).

TABLE VII. Summary of 84 ANOVA Tests: Each Row Represents One of
42 Responses; Column 4 Reports Differences Attributable to Cluster-Choice
Criterion and Column 5 Reports Differences Attributable to Node-Selection
Heuristic — cells highlighted in red identify significant differences

ANOVA Cdf ANOVA Cdf

Category 1D Response Name Cloud Crit (3) Cluster
¥ User Request Rate 99.96
i NERA Rate 100
¥ Full Grant Rate 100
User 4 User Arrival Rate 99.87

¥5 | User Give-up Rate
b Grant Laten
yd40 | User § Rate
y41 | Avg. Fraction VMs Obtained
y42 | Avg. Runinstance Response Time
¥7 | Reallocation Rate
¥8 | Full Grant Proportion
¥9 | NERA Proportion
y10 | vCore Utilization
Cloud y11_| Memory Utilization
y12 | Disk Space Utilization
y13 | pCore Load
y14 | Disk Count Load
y1 NIC Count Load
¥1 vCore Utilization Varianze
Memory Utilization Vari
Disk Space Utilization Variance
pCore Load Variance
Disk Count Variance
NIC Count Variance
Node Reallocation Rate
Cluster NERA Rate
Cluster Full-Grant Rate
Allocation Rate
Standard Deviation-NERA
Standard Deviation-Full-Grant
2_ Standard Deviation-Allocation Rate
Current Instances
Mismall Instances
Milarge Instances
Mixlarge Instances
Cimedium Instances

[Cixlarge Instances
M2xlarge
Mixlarge Instances
WS Message Rate
Inira-Site Messages

Aggregate Revenue in §/Hour

2
Cluster | y22

s

¥

VMs

Internet/
Intranet
LA

Revenue

VI. DISCUSSION

The ANOVA tests on the experiment results demonstrate
clearly that cluster-choice criterion exhibits a much stronger
effect on overall cloud behavior than does node-selection
heuristic. Cluster-choice criterion caused significant
differences in 79% (33/42) of the responses, and also led to
significant differences in 100% (8/8) of responses chosen to
represent the eight behavioral dimensions of Koala. The
node-selection heuristic significantly influenced only 29%
(12/42) of the responses, and led to significant differences in
only 12.5% (1/8) of Koala’s behavioral dimensions.

Examining results in Table VIII shows that the percent-
allocated (PAL) cluster-choice criterion leads to higher

average loads (y/3-y15) and utilizations (y/0-y12) in the
cloud. This occurs because admitted users are placed on
clusters that can accommodate the highest fraction of
requested instances (y4/), which also leads to a higher
number of running instances (y29), allowing the cloud to
generate more revenue per hour (y39). While PAL generates
only $384/hour more revenue than least-full first (LLF),
when aggregated over a year this difference means that PAL
generates about $3.4M more than LLF.

TABLE VIII. Mean for Each Response under Each of Three Cluster-
Choice Criteria — cells highlighted in red per ANOVA from Table VII

Category ID LLF PAL RAN
1 7.461 8.386 7.696
0.444 0.506 0.450
0.624 0.574 0514
U 4 37324 35878 3Nn70
ser ye | _0.066 | 0074 | 0.06/ |
T 9044 10488 9526
0.925 0.915 0923
41 0.579 0.597 0.551
0.278
0.000052 0.000084 0.000057
0.438 0.332 0.389
0.481 0.587 0.537
| 0774 | 0791 [0783 |
Cloud 0.188 0.197 0.199
0.413 0.428 0.418
0.774
0.964 0.997 0.948
1591 1.645 1.554
0.0017 0.019 0.0071
0.0009 0.0034 0.0015
0.00 0.0086 0.0038
0.0017 0.019 0.0071
0.018 0.052 0.024
0.045 0.127 0.052
Cluster 0.00015 0.00015 0.00008
0.507 0.606 0.562
0.421 0.323 0375
0.19 0.232 0232
(001 [001 | 0011 |
0.008 0.011 0.015
0.034 0.058 0.02
21808 22139 20365
0.355 0.354 0333
0.308 [0311 [0.30
VMs 0.138 0.142 0.151
0.057 0.053 0.052
y34 0.0 0.022 0.0,
35 0.026 0.023 0.026
&L 0.091 0.096 0.106
Internet/ 37 60867 62677 60341
Intranet y38__ 1 0977 1 0977 | 0977 |
Revenue y39 11322 11706 11624

On the other hand, these factors have an overall negative
effect on the general population of users, who receive more
NERA responses (y2) and so have to retry more requests (y/)
before their VMs can be placed, which leads to greater than
20 minutes more waiting time (6). The increase in requests
also leads to an increase in the rate of WS messages (y37).
PAL, then, serves fewer users (y4) but gives each served user
a larger proportion of their requested VMs (y4/). Dedicating
more resources to fewer users also leads to significant
increase in variance in resource load (y/9-y21) and
utilization (y16-y18) among clusters in the cloud.

Within the cloud, PAL also leads to increased conflicts
among parallel allocation requests, which results in more
reallocations of clusters (y7) and a lower proportion of full
grants (y8). While this may seem counterintuitive,

accommodating a larger proportion of each user’s requested
VMs means that fewer users can obtain all the VMs
requested, as compared with the LFF cluster-choice criterion.

TABLE IX. Mean for Each Response under Each of Six Node-Selection
Heuristics — cells highlighted in red per ANOVA from Table VII

Cateqory 1D FF LF MFE NF 1P RA
y1 7.643 .450 7.692 7.710 7.871 7.718
F L J 0.455 i
0.555
L 0.067
10420
0.908 0.922
|_0.598 | 0.567 | 0.574]
0.276 0.278 0279 0217
L y9
y1
Cloud y1
y1
y1
y14
y1
¥1
7
y1
g
1
Cluster | y:
yas
m
Y:
y27
y-
29
30 0.356 B
0.315 0304
VMs | 0149 | 0145 | 0147 | 0435 | 0.142 |
0.018 0.026 0.024 0.027 0.022
0.019 0.028 0.026 0.029 IJ.IJTZJ
9 | 0097 [0101 | 0.095]
Internet/ 63016 | 61223 | 61156 | 60571 | 6178
Intranet 0.977 0.977 09717 0.976 0977
Revenue

When compared with PAL, LLF serves more users (y4)
and dedicates fewer resources to each user, which results in
more full grants (y3), and also distributes load more evenly
(y16-y21) among clusters. RAN, on the other hand, leads to
fewer full grants (y3) because the cluster with the most
available space is not always chosen. RAN also leads to
lower node reallocation rate (y22) because there is a smaller
chance that overlapping allocation requests will be assigned
to the same cluster.

Examining results in Table IX reveals a few effects
attributable to node-selection heuristic. LF and TP lead to
lower cloud-wide virtual core utilization (y/0) because these
heuristics more often choose empty nodes on which to place
VMs. By choosing empty nodes more often, LF tends to
squeeze out some larger VM types (y34 and y35) associated
with Web service users. This factor also leads LF to yield
lower user success rate (y40) and higher give-up rate (y5).
By tagging nodes for particular types of VMs, TP avoids
squeezing out larger VM types. TP also yields lower disk
space utilization (y/2) and disk count load (y/4). Finally, LF
and RA lead to lower grant latencies (y6), reflecting the fact
that these heuristics allow users who successfully acquire
VMs to do so with an average of about one fewer retry than

97

the other heuristics. This occurs primarily when combined
with the LLF and RAN cluster-choice criteria. When
combined with PAL, LF and RA lead to grant latencies
closer to the grand average.

Reviewing individual ANOVA plots (such as Fig. 2) for
all 42 responses allowed us to identify particularly
noteworthy combinations of cluster-choice criterion and
node-selection heuristic. For example, the PAL-LF
combination led to the highest user request rate (y/), NERA
rate (y2), give-up rate (y5) and fraction of VMs obtained
(y41), while also yielding the lowest user success rate (y40).
At the same time, PAL-LF led to highest disk space
utilization (y/2) and disk (y/4) and network-interface
controller (y/5) loads. Combining PAL with MF yielded
highest variance among clusters for virtual core (y16),
memory (y17) and disk space (y/8) utilizations.

The LLF-LF combination led to lowest grant latency (y6)
and virtual core (¥/0) and memory (y//) utilizations.
Combining LLF and TP yielded lowest disk space utilization
(y12) and the least revenue per hour (y39).

The RAN-TP combination gave lowest disk count load
(v14). RAN-MF yielded the lowest faction of M1small VMs
(¥30), while RAN-LF combined to give the highest fraction
of Mlxlarge VMs (y32).

VIL

We have developed an objective method to compare
resource-allocation algorithms in simulations of large
distributed systems. Previously, we applied our method to
compare proposed congestion-control algorithms for the
Internet. In this paper, we demonstrated steps three and four
in our method, using results from an earlier sensitivity
analysis to construct parameter combinations under which
we compared macroscopic behavior of algorithms for
initially placing VMs on nodes in on-demand infrastructure
clouds. While we restricted our comparison to 18 selected
algorithms, the approach we use should be applicable to
compare any set of competing algorithms.

We generated insights regarding two-level VM-
placement algorithms, showing that choice of cluster has
larger influence, than selection of nodes, on macroscopic
behavior in an infrastructure cloud. We identified some
tradeoffs among cluster-choice criteria. We provided
evidence showing that, on average, different algorithms for
initial VM placement in on-demand infrastructure clouds
yield small quantitative differences in many measured
responses. On the other hand, we showed that selection of
the criterion for choosing a cluster can lead to very large
difference in provider revenue, when aggregated over time.

We envision future work along three directions. First, we
intend to compare these 18 VM-placement algorithms under
situations where various failures inhibit cloud operation.
Second, we will extend our comparison to include additional
VM-placement algorithms, which have become the subject
of much recent research. Finally, we will also consider
applying our method to compare various proposed
algorithms for moving VMs among cloud assets, whether to
reduce cost, enhance user performance, or both.

CONCLUSIONS AND FUTURE WORK

FIGURE & TABLE ENLARGEMENTS

Enlargements of all figures and tables in this paper may be
downloaded from
http://www.nist.gov/itl/antd/upload/LargerTablesPaper36.pdf

(1]

(2]
(3]

(4]

(5]

(6]

(7]

(8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

V. Paxson and S. Floyd. “Why we don’t know how to
simulate the Internet,” Proceedings of the 1997 Winter
Simulation Conference, ed. S. Andradottir, K. J. Healy, D. H.
Withers, and B. L. Nelson, pp. 1037-1044.

G. E. Box, J. S. Hunter, and W. G. Hunter, Statistics for
Experimenters, 2™ ed., Wiley, 2005, 639 pages.

K. Mills, J. Filliben, D. Cho and E. Schwartz, “K. Mills, J.
Filliben, D-Y. Cho and E. Schwartz, "Predicting Macroscopic
Dynamics in Large Distributed Systems", Proceedings of
ASME PVP 2011, Baltimore, MD, July 17-22, 2011.

K. Mills, J. Filliben, D. Cho, E. Schwartz and D. Genin, Study
of Proposed Internet Congestion Control Algorithms, NIST
Special Publication 500-282, May 2010, 534 pages.

K. Mills, J. Filliben and C. Dabrowski, "An Efficient
Sensitivity Analysis Method for Large Cloud Simulations",
Proceedings of the 4th International Cloud Computing
Conference, IEEE, Washington, D.C., July 5-9, 2011.

D. Nurmi, et al, “The Eucalyptus Open-Source Cloud-
Computing System”, Proceedings of the 9™ IEEE/ACM
International Symposium on Cluster Computing and the Grid,
May 18-21, 2009, pp. 124-131.

S. S. Seiden, R. V. Stee, and L. Epstein, “New Bounds for
Variable-Sized Online Bin Packing”, SIAM Journal on
Computing, Vol. 32, No. 2, 2003, pp. 455-469.

E. Coffman, M. Garey, and D. Johnson. Approximation
Algorithms for Bin Packing: A Survey. PWS Publishers,
Boston, 1997.

S. Shang, Y. Wu, J. Jiang and W. Zheng, “An Intelligent
Capacity Planning Model for Cloud Market”, Journal of
Internet Services and Information Security, 1:1, 37-45.

I. Fujiwara, K. Aida, and I. Ono, “Applying Double-sided
Combinational Auctions to Resource Allocation in Cloud
Computing”, Proceedings of the 10" Annual International
Symposium on Applications and the Internet, IEEE, July 19-
23,2010, pp. 7-14.

Amazon Elastic Compute
http://aws.amazon.com/ec2/, 2010.

A. Andrzejak, D. Kondo, and S. Yi, “Decision Model for
Cloud Computing under SLA Constraints,” INRIA Technical
Report-004/4849, Version 1, April 21, 2010.

M. Cardosa, A. Singh, H. Pucha and A. Chandra, “Exploiting
Spatio-Temporal Tradeoffs for Energy Efficient MapReduce
in the Cloud”, Dept. of Comp. Sci. and Eng., University of
Minnesota, TR-10-008. April 7, 2010, 18 pp.

X. Meng, V. Pappas and L. Zhang, “Improving the Scalability
of Data Center Networks with Traffic-aware Virtual Machine
Placement”, Proceedings of IEEE 2010 INFOCOM, Mar. 14-
19, 2010.

B. Chandrasekaran, R. Purush, B. Douglas and D. Schmidt,
“Virtualization Management Using Microsoft System Center
and Dell OpenManage”, Dell Power Solutions, Aug. 2007,
40-44.

J. Xu and J. Fortes, “Multi-objective Virtual Machine
Placement in Virtualized Data Center Environments”,
Proceedings of the 2010 IEEE/ACM Conference on Green
Computing and Communications, 179-188.

M. Mishra and A. Sahoo, “On Theory of VM Placement:
Anomalies in Existing Methodologies and Their Mitigation

Cloud (Amazon EC2)

98

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33

[t}

[34]

[35]

Using a Novel Vector Based Approach”, Proceedings of the
4th International Cloud Computing Conference, IEEE,
Washington, D.C., July 5-9, 2011.

U. Bellur, C. Rao and M. Kumar, “Optimal Placement
Algorithms for Virtual Machines”, Proceedings of CoRR.
2010.

J. Fontan, “Session 6: Advance Usage of OpenNebula”,
OpenNebual Technology Days, July 20-21, 2010.

M. Sindelar, R. Sitaraman and P. Shenoy, “Sharing-Aware
Algorithms for Virtual Machine Colocation”, Proceedings of
the 23rd Annual ACM Symposium on Parallelism in
Algorithms and Architectures, June 4-6, 2011.

H. Van and F. Tran, “Autonomic resource management for
service host platforms” Proceedings of Workshop on
Software Engineering Challenges in Cloud Computing,
Vancouver, Canada, April 2010.

C. Mark, D. Niyato and T. Chen-Khong, “Evolutionary
Optimal Virtual Machine Placement and Demand Forecaster
for Cloud Computing”, Proceedings of the 2011 IEE
International ~ Conference on Advanced Information
Networking and Applications, 348-355.

F. Machida, M. Kawato and Y. Maeno, “Redundant Virtual
Machine Placement for Fault-tolerant Consolidated Server
Clusters”, Proceedings of the 12" IEEE/IFIP Network
Operations and Management Symposium, Osaka, Japan,
2010, 32-39.

N. Bobroff, A. Kochut and K. Beaty, “Dynamic Placement of
Virtual Machines for Managing SLA Violations”,
Proceedings of the 10" IFIP/IEEE Symposium on Integrated
Network Management, 2007,119-128.

M. Chen, H. Zhang, Y.Y. Su, X. Wang, G. Jiang and K.
Yoshihra, “Effective VM Sizing in Virtualized Data Centers”,
Proceedings of the 12 IFIP/IEEE Symposium on Integrated
Network Management, 2011, Dublin, Ireland.

S. Das, M. Kagan and D. Crupnicoff, “Faster and Efficient
VM Migrations for Improving SLA and ROI in Cloud
Infrastructures”, DC CAVES 2010.

A. Verma, P. Ahuja and A. Neogi, “pMapper: Power and
Migration Cost Aware Application Placement in Virtualized
Systems” Proceedings of the 9™ ACM/IFIP/USENIX
International Conference on Middleware, 243-264.

C. Isci, J. Hanson, I. Whalley, M. Steinder and J. Kephart,
“Runtime Demand Estimation for Effective Dynamic
Resource Management”, Proceedings of the 12" TEEE/IFIP
Network Operations and Management Symposium, Osaka,
Japan, 2010, 381-388.

S. Lee, R. Panigrahy, V. Prabhakaran, V. Ramasubrahmanian,
K. Talwar, L. Uyeda and U. Wieder, “Validating Heuristics
for Virtual Machine Consolidation”, Microsoft Research,
MSR-TR-2011-9, January 2011, 14 pp.

B. Malet and P. Pietzuch, “Resource Allocation across
Multiple Cloud Data Centres”, Proceedings of the 8th
International Workshop on Middleware for Grids, Clouds and
e-Science, ACM, 2010.

C. Hyser, B. McKee, R. Gardner and B. Watson, “Autonomic

Virtual Machine Placement in the Data Center”, HP
Laboratories, HPL-2007-189, 11 pp.
Amazon Elastic Compute Cloud (Amazon EC2)

http://aws.amazon.com/ec2/, 2010.

Amazon Elastic Compute Cloud API Reference API Version
2009-08-15.

Amazon EC2 Instance
http://aws.amazon.com/ec2/instance-types/, 2010.
F. Curbera, et al. “Unraveling the Web services web: an

introduction to SOAP, WSDL, and UDDI”, Internet
Computing, IEEE, March/April, 2002, pp. 86-93.

Types

